CCI NON-WOVEN GEOTEXTILE

LONG FIBER FILAMENT NEEDLE PUNCHED GEOTEXTILE

PRODUCT DESCRIPTION:

Long fiber filament needle punched geotextile is a specialized material extensively employed in civil engineering and construction projects for its multifaceted functionalities. Comprising long synthetic fibers, mainly polypropylene, the material undergoes a needle punching process wherein barbed needles interlace the fibers, creating a cohesive structure. This technique enhances the geotextile's strength, stability, and filtration capabilities. Geotextiles, in general, serve crucial roles in infrastructure development, including soil stabilization, drainage improvement, filtration, and erosion control.

PROPERTIES:

- 1. **Material Composition**: These geotextiles are typically made from polypropylene. The long fiber filaments provide strength and durability to the material.
- 2. **Needle Punching**: The manufacturing process involves needle punching, where barbed needles mechanically interlock the fibers, creating a stable and durable structure without the need for adhesives or binders.
- 3. **High Strength**: Long fiber filaments contribute to the geotextile's high tensile strength, making it capable of withstanding significant loads and stresses.
- 4. **Permeability**: Needle punched non-woven geotextiles are designed to be permeable, allowing water to pass through while retaining soil particles. This property facilitates drainage, filtration, and separation of soil layers.
- 5. **Durability**: These geotextiles exhibit excellent resistance to UV degradation, chemical degradation, and biological degradation, ensuring long-term performance in various environmental conditions.
- 6. **Flexibility**: Despite their strength, long fiber filament needle punched geotextiles remain flexible, conforming to irregular surfaces and accommodating ground movement without compromising their integrity.
- 7. **Erosion Control**: By stabilizing soil and preventing erosion, these geotextiles help maintain the integrity of slopes, embankments, and other earth structures, reducing maintenance costs and environmental impacts.
- 8. **Filtration**: The porous structure of the geotextile allows water to flow through while trapping soil particles, preventing clogging of drainage systems and maintaining hydraulic efficiency.
- 9. **Separation**: Long fiber filament needle punched geotextiles act as a barrier between different soil layers, preventing mixing and maintaining the integrity of engineered structures.
- 10. Installation Ease: These geotextiles are typically lightweight and easy to handle, allowing for efficient installation even in challenging terrain.

APPLICATION:

- 1. **Road Construction**: Used as a separation and filtration layer between subgrade soil and aggregate base courses to prevent the mixing of materials and improve the structural integrity of roads and highways.
- 2. **Railway Infrastructure**: Employed for stabilization and reinforcement of railway embankments, preventing soil erosion and maintaining track stability.
- 3. **Retaining Walls**: Installed behind retaining walls to provide drainage and soil reinforcement, reducing hydrostatic pressure and preventing soil movement.
- 4. **Erosion Control**: Applied on slopes, riverbanks, and shorelines to prevent soil erosion caused by water runoff, wave action, or wind, preserving the integrity of natural and engineered structures.
- 5. Landfill Engineering: Used as a barrier to control leachate migration and gas emissions in landfills, providing environmental protection and enhancing landfill stability.
- 6. **Stormwater Management**: Integrated into stormwater management systems as a filtration and separation layer to control sedimentation, improve water quality, and manage runoff.
- 7. **Subsurface Drainage**: Installed beneath roads, sports fields, and landscaping features to facilitate subsurface drainage, preventing waterlogging and maintaining soil stability.
- 8. **Pond and Lake Liners**: Utilized as a protective barrier in pond and lake construction to prevent seepage and maintain water containment.
- 9. **Coastal Protection**: Deployed in coastal engineering projects to stabilize shorelines, control erosion, and protect infrastructure from wave action and tidal forces.
- 10. **Vegetated Reinforcement**: Combined with vegetation for bioengineering applications to reinforce soil, promote vegetation growth, and enhance ecological restoration efforts.

SPECIFICATION:

100 g/m² – 800 g/m²

SIZE OF PACKAGE:

Width 2-6m, Length 30-100m (or per request)

Filament spunbond nonwovens Geotextile Specifications (GB/T 17639-2008)

Item	Values							
Specification	100	150	200	300	400	500	600	800
Thickness, mm	0.8	1.2	1.6	2.2	2.8	3.4	4.2	5.5
Longitudinal and Transverse Rupture Strength, kN/m	4.5	7.5	10.0	15.0	20.0	25.0	30.0	40.0
Intensity to the Standard Vertical and Horizontal Elongation, %	40 - 80							
CBR Bursting Strength, kN	0.8	1.6	1.9	2.9	3.9	5.3	6.4	7.9
Vertical and Horizontal Tear, kN	0.14	0.21	0.28	0.42	0.56	0.70	0.82	1.10
Sieve Size, mm	0.05 - 0.20							
Vertical Permeability Coefficient, K= 1.0- 9.9 cm/s	Kx(10 ⁻¹ ~ 10 ⁻³)							
Width Variation, %	-0.5							
Deviation of mass per unit area, %	-5							

STORAGE:

- It must be stored in original package
- Stored in dry conditions, protected from direct sunlight, and other environmental conditions.

